If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2-4r-16=0
a = 1; b = -4; c = -16;
Δ = b2-4ac
Δ = -42-4·1·(-16)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{5}}{2*1}=\frac{4-4\sqrt{5}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{5}}{2*1}=\frac{4+4\sqrt{5}}{2} $
| 358=f−235 | | 741=19q | | 3x-20=x+20x= | | g+31=635 | | 12+6h=-20+4h | | 617=h+368 | | 28n=560 | | 462=22j | | 7x^2-9x=10 | | 910=7z | | 230=j−345 | | 9m^2+54=5 | | 8=3m+5÷4 | | 4(y+6)=4y–24 | | -3/8+x=71/4 | | A=4w^-80w | | 6z=402 | | 1/8(8c+24)=33-c | | 7=z-11 | | 4+(1-x)-4=16 | | v/29=12 | | 0.32=0.8c | | 62=c−25 | | 2(y+5)=2(y+7)+4 | | 1x-3.4=-21.9 | | 609=21u | | 0.7=c/4 | | 20-3m=4+m | | 3x+40=5x-31 | | 11(p-3)=5(p+3) | | 2(y+5)=2(y+7)-4 | | 8h-h-h=9*2 |